Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Index-based Solutions for Efficient Density Peak Clustering (2002.03182v2)

Published 8 Feb 2020 in cs.DB and cs.IR

Abstract: Density Peak Clustering (DPC), a popular density-based clustering approach, has received considerable attention from the research community primarily due to its simplicity and fewer-parameter requirement. However, the resultant clusters obtained using DPC are influenced by the sensitive parameter $d_c$, which depends on data distribution and requirements of different users. Besides, the original DPC algorithm requires visiting a large number of objects, making it slow. To this end, this paper investigates index-based solutions for DPC. Specifically, we propose two list-based index methods viz. (i) a simple List Index, and (ii) an advanced Cumulative Histogram Index. Efficient query algorithms are proposed for these indices which significantly avoids irrelevant comparisons at the cost of space. For memory-constrained systems, we further introduce an approximate solution to the above indices which allows substantial reduction in the space cost, provided that slight inaccuracies are admissible. Furthermore, owing to considerably lower memory requirements of existing tree-based index structures, we also present effective pruning techniques and efficient query algorithms to support DPC using the popular Quadtree Index and R-tree Index. Finally, we practically evaluate all the above indices and present the findings and results, obtained from a set of extensive experiments on six synthetic and real datasets. The experimental insights obtained can help to guide in selecting a befitting index.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.