Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Surrogate Assisted Evolutionary Algorithm for Medium Scale Expensive Multi-Objective Optimisation Problems (2002.03150v1)

Published 8 Feb 2020 in cs.NE

Abstract: Building a surrogate model of an objective function has shown to be effective to assist evolutionary algorithms (EAs) to solve real-world complex optimisation problems which involve either computationally expensive numerical simulations or costly physical experiments. However, their effectiveness mostly focuses on small-scale problems with less than 10 decision variables. The scalability of surrogate assisted EAs (SAEAs) have not been well studied yet. In this paper, we propose a Gaussian process surrogate model assisted EA for medium-scale expensive multi-objective optimisation problems with up to 50 decision variables. There are three distinctive features of our proposed SAEA. First, instead of using all decision variables in surrogate model building, we only use those correlated ones to build the surrogate model for each objective function. Second, rather than directly optimising the surrogate objective functions, the original multi-objective optimisation problem is transformed to a new one based on the surrogate models. Last but not the least, a subset selection method is developed to choose a couple of promising candidate solutions for actual objective function evaluations thus to update the training dataset. The effectiveness of our proposed algorithm is validated on benchmark problems with 10, 20, 50 variables, comparing with three state-of-the-art SAEAs.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube