Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GLSearch: Maximum Common Subgraph Detection via Learning to Search (2002.03129v3)

Published 8 Feb 2020 in cs.LG, cs.SI, and stat.ML

Abstract: Detecting the Maximum Common Subgraph (MCS) between two input graphs is fundamental for applications in drug synthesis, malware detection, cloud computing, etc. However, MCS computation is NP-hard, and state-of-the-art MCS solvers rely on heuristic search algorithms which in practice cannot find good solution for large graph pairs given a limited computation budget. We propose GLSearch, a Graph Neural Network (GNN) based learning to search model. Our model is built upon the branch and bound algorithm, which selects one pair of nodes from the two input graphs to expand at a time. Instead of using heuristics, we propose a novel GNN-based Deep Q-Network (DQN) to select the node pair, allowing the search process faster and more adaptive. To further enhance the training of DQN, we leverage the search process to provide supervision in a pre-training stage and guide our agent during an imitation learning stage. Experiments on synthetic and real-world large graph pairs demonstrate that our model learns a search strategy that is able to detect significantly larger common subgraphs given the same computation budget. Our GLSearch can be potentially extended to solve many other combinatorial problems with constraints on graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yunsheng Bai (17 papers)
  2. Derek Xu (10 papers)
  3. Yizhou Sun (149 papers)
  4. Wei Wang (1793 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.