Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Shipper Cooperation in Stochastic Drone Delivery: A Dynamic Bayesian Game Approach (2002.03118v1)

Published 8 Feb 2020 in cs.GT and math.OC

Abstract: With the recent technological innovation, unmanned aerial vehicles, known as drones, have found numerous applications including package and parcel delivery for shippers. Drone delivery offers benefits over conventional ground-based vehicle delivery in terms of faster speed, lower cost, more environment-friendly, and less manpower needed. However, most of existing studies on drone delivery planning and scheduling focus on a single shipper and ignore uncertainty factors. As such, in this paper, we consider a scenario that multiple shippers can cooperate to minimize their drone delivery cost. We propose the Bayesian Shipper Cooperation in Stochastic Drone Delivery (BCoSDD) framework. The framework is composed of three functions, i.e., package assignment, shipper cooperation formation and cost management. The uncertainties of drone breakdown and misbehavior of cooperative shippers are taken into account by using multistage stochastic programming optimization and dynamic Bayesian coalition formation game. We conduct extensive performance evaluation of the BCoSDD framework by using customer locations from Solomon benchmark suite and a real Singapore logistics industry. As a result, the framework can help the shippers plan and schedule their drone delivery effectively.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.