Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Wasserstein Proximal Gradient Algorithm (2002.03035v3)

Published 7 Feb 2020 in math.OC and stat.ML

Abstract: Wasserstein gradient flows are continuous time dynamics that define curves of steepest descent to minimize an objective function over the space of probability measures (i.e., the Wasserstein space). This objective is typically a divergence w.r.t. a fixed target distribution. In recent years, these continuous time dynamics have been used to study the convergence of machine learning algorithms aiming at approximating a probability distribution. However, the discrete-time behavior of these algorithms might differ from the continuous time dynamics. Besides, although discretized gradient flows have been proposed in the literature, little is known about their minimization power. In this work, we propose a Forward Backward (FB) discretization scheme that can tackle the case where the objective function is the sum of a smooth and a nonsmooth geodesically convex terms. Using techniques from convex optimization and optimal transport, we analyze the FB scheme as a minimization algorithm on the Wasserstein space. More precisely, we show under mild assumptions that the FB scheme has convergence guarantees similar to the proximal gradient algorithm in Euclidean spaces.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.