Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Activation Density driven Energy-Efficient Pruning in Training (2002.02949v2)

Published 7 Feb 2020 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: Neural network pruning with suitable retraining can yield networks with considerably fewer parameters than the original with comparable degrees of accuracy. Typical pruning methods require large, fully trained networks as a starting point from which they perform a time-intensive iterative pruning and retraining procedure to regain the original accuracy. We propose a novel pruning method that prunes a network real-time during training, reducing the overall training time to achieve an efficient compressed network. We introduce an activation density based analysis to identify the optimal relative sizing or compression for each layer of the network. Our method is architecture agnostic, allowing it to be employed on a wide variety of systems. For VGG-19 and ResNet18 on CIFAR-10, CIFAR-100, and TinyImageNet, we obtain exceedingly sparse networks (up to $200 \times$ reduction in parameters and over $60 \times$ reduction in inference compute operations in the best case) with accuracy comparable to the baseline network. By reducing the network size periodically during training, we achieve total training times that are shorter than those of previously proposed pruning methods. Furthermore, training compressed networks at different epochs with our proposed method yields considerable reduction in training compute complexity ($1.6\times$ to $3.2\times$ lower) at near iso-accuracy as compared to a baseline network trained entirely from scratch.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.