Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

How Does Gender Balance In Training Data Affect Face Recognition Accuracy? (2002.02934v2)

Published 7 Feb 2020 in cs.CV

Abstract: Deep learning methods have greatly increased the accuracy of face recognition, but an old problem still persists: accuracy is usually higher for men than women. It is often speculated that lower accuracy for women is caused by under-representation in the training data. This work investigates female under-representation in the training data is truly the cause of lower accuracy for females on test data. Using a state-of-the-art deep CNN, three different loss functions, and two training datasets, we train each on seven subsets with different male/female ratios, totaling forty two trainings, that are tested on three different datasets. Results show that (1) gender balance in the training data does not translate into gender balance in the test accuracy, (2) the "gender gap" in test accuracy is not minimized by a gender-balanced training set, but by a training set with more male images than female images, and (3) training to minimize the accuracy gap does not result in highest female, male or average accuracy

Citations (55)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.