Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Integrated Perception and Motion Planning with Distributionally Robust Risk Constraints (2002.02928v1)

Published 7 Feb 2020 in eess.SY and cs.SY

Abstract: Safely deploying robots in uncertain and dynamic environments requires a systematic accounting of various risks, both within and across layers in an autonomy stack from perception to motion planning and control. Many widely used motion planning algorithms do not adequately incorporate inherent perception and prediction uncertainties, often ignoring them altogether or making questionable assumptions of Gaussianity. We propose a distributionally robust incremental sampling-based motion planning framework that explicitly and coherently incorporates perception and prediction uncertainties. We design output feedback policies and consider moment-based ambiguity sets of distributions to enforce probabilistic collision avoidance constraints under the worst-case distribution in the ambiguity set. Our solution approach, called Output Feedback Distributionally Robust $RRT{}$(OFDR-$RRT{})$, produces asymptotically optimal risk-bounded trajectories for robots operating in dynamic, cluttered, and uncertain environments, explicitly incorporating mapping and localization error, stochastic process disturbances, unpredictable obstacle motion, and uncertain obstacle locations. Numerical experiments illustrate the effectiveness of the proposed algorithm.

Citations (20)

Summary

We haven't generated a summary for this paper yet.