Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Integrated Perception and Motion Planning with Distributionally Robust Risk Constraints (2002.02928v1)

Published 7 Feb 2020 in eess.SY and cs.SY

Abstract: Safely deploying robots in uncertain and dynamic environments requires a systematic accounting of various risks, both within and across layers in an autonomy stack from perception to motion planning and control. Many widely used motion planning algorithms do not adequately incorporate inherent perception and prediction uncertainties, often ignoring them altogether or making questionable assumptions of Gaussianity. We propose a distributionally robust incremental sampling-based motion planning framework that explicitly and coherently incorporates perception and prediction uncertainties. We design output feedback policies and consider moment-based ambiguity sets of distributions to enforce probabilistic collision avoidance constraints under the worst-case distribution in the ambiguity set. Our solution approach, called Output Feedback Distributionally Robust $RRT{}$(OFDR-$RRT{})$, produces asymptotically optimal risk-bounded trajectories for robots operating in dynamic, cluttered, and uncertain environments, explicitly incorporating mapping and localization error, stochastic process disturbances, unpredictable obstacle motion, and uncertain obstacle locations. Numerical experiments illustrate the effectiveness of the proposed algorithm.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.