iqiyi Submission to ActivityNet Challenge 2019 Kinetics-700 challenge: Hierarchical Group-wise Attention (2002.02918v1)
Abstract: In this report, the method for the iqiyi submission to the task of ActivityNet 2019 Kinetics-700 challenge is described. Three models are involved in the model ensemble stage: TSN, HG-NL and StNet. We propose the hierarchical group-wise non-local (HG-NL) module for frame-level features aggregation for video classification. The standard non-local (NL) module is effective in aggregating frame-level features on the task of video classification but presents low parameters efficiency and high computational cost. The HG-NL method involves a hierarchical group-wise structure and generates multiple attention maps to enhance performance. Basing on this hierarchical group-wise structure, the proposed method has competitive accuracy, fewer parameters and smaller computational cost than the standard NL. For the task of ActivityNet 2019 Kinetics-700 challenge, after model ensemble, we finally obtain an averaged top-1 and top-5 error percentage 28.444% on the test set.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.