Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ill-Posedness and Optimization Geometry for Nonlinear Neural Network Training (2002.02882v1)

Published 7 Feb 2020 in math.OC, cs.LG, and cs.NE

Abstract: In this work we analyze the role nonlinear activation functions play at stationary points of dense neural network training problems. We consider a generic least squares loss function training formulation. We show that the nonlinear activation functions used in the network construction play a critical role in classifying stationary points of the loss landscape. We show that for shallow dense networks, the nonlinear activation function determines the Hessian nullspace in the vicinity of global minima (if they exist), and therefore determines the ill-posedness of the training problem. Furthermore, for shallow nonlinear networks we show that the zeros of the activation function and its derivatives can lead to spurious local minima, and discuss conditions for strict saddle points. We extend these results to deep dense neural networks, showing that the last activation function plays an important role in classifying stationary points, due to how it shows up in the gradient from the chain rule.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.