Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Ill-Posedness and Optimization Geometry for Nonlinear Neural Network Training (2002.02882v1)

Published 7 Feb 2020 in math.OC, cs.LG, and cs.NE

Abstract: In this work we analyze the role nonlinear activation functions play at stationary points of dense neural network training problems. We consider a generic least squares loss function training formulation. We show that the nonlinear activation functions used in the network construction play a critical role in classifying stationary points of the loss landscape. We show that for shallow dense networks, the nonlinear activation function determines the Hessian nullspace in the vicinity of global minima (if they exist), and therefore determines the ill-posedness of the training problem. Furthermore, for shallow nonlinear networks we show that the zeros of the activation function and its derivatives can lead to spurious local minima, and discuss conditions for strict saddle points. We extend these results to deep dense neural networks, showing that the last activation function plays an important role in classifying stationary points, due to how it shows up in the gradient from the chain rule.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.