On List k-Coloring Convex Bipartite Graphs (2002.02729v1)
Abstract: List k-Coloring (Li k-Col) is the decision problem asking if a given graph admits a proper coloring compatible with a given list assignment to its vertices with colors in {1,2,..,k}. The problem is known to be NP-hard even for k=3 within the class of 3-regular planar bipartite graphs and for k=4 within the class of chordal bipartite graphs. In 2015, Huang, Johnson and Paulusma asked for the complexity of Li 3-Col in the class of chordal bipartite graphs. In this paper we give a partial answer to this question by showing that Li k-Col is polynomial in the class of convex bipartite graphs. We show first that biconvex bipartite graphs admit a multichain ordering, extending the classes of graphs where a polynomial algorithm of Enright, Stewart and Tardos (2014) can be applied to the problem. We provide a dynamic programming algorithm to solve the Li k-Col in the calss of convex bipartite graphs. Finally we show how our algorithm can be modified to solve the more general Li H-Col problem on convex bipartite graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.