Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deep Robust Multilevel Semantic Cross-Modal Hashing (2002.02698v2)

Published 7 Feb 2020 in cs.CV

Abstract: Hashing based cross-modal retrieval has recently made significant progress. But straightforward embedding data from different modalities into a joint Hamming space will inevitably produce false codes due to the intrinsic modality discrepancy and noises. We present a novel Robust Multilevel Semantic Hashing (RMSH) for more accurate cross-modal retrieval. It seeks to preserve fine-grained similarity among data with rich semantics, while explicitly require distances between dissimilar points to be larger than a specific value for strong robustness. For this, we give an effective bound of this value based on the information coding-theoretic analysis, and the above goals are embodied into a margin-adaptive triplet loss. Furthermore, we introduce pseudo-codes via fusing multiple hash codes to explore seldom-seen semantics, alleviating the sparsity problem of similarity information. Experiments on three benchmarks show the validity of the derived bounds, and our method achieves state-of-the-art performance.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.