Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Ready Policy One: World Building Through Active Learning (2002.02693v1)

Published 7 Feb 2020 in cs.LG and stat.ML

Abstract: Model-Based Reinforcement Learning (MBRL) offers a promising direction for sample efficient learning, often achieving state of the art results for continuous control tasks. However, many existing MBRL methods rely on combining greedy policies with exploration heuristics, and even those which utilize principled exploration bonuses construct dual objectives in an ad hoc fashion. In this paper we introduce Ready Policy One (RP1), a framework that views MBRL as an active learning problem, where we aim to improve the world model in the fewest samples possible. RP1 achieves this by utilizing a hybrid objective function, which crucially adapts during optimization, allowing the algorithm to trade off reward v.s. exploration at different stages of learning. In addition, we introduce a principled mechanism to terminate sample collection once we have a rich enough trajectory batch to improve the model. We rigorously evaluate our method on a variety of continuous control tasks, and demonstrate statistically significant gains over existing approaches.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.