Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Temporal Probability Calibration (2002.02644v2)

Published 7 Feb 2020 in cs.LG and stat.ML

Abstract: In many applications, accurate class probability estimates are required, but many types of models produce poor quality probability estimates despite achieving acceptable classification accuracy. Even though probability calibration has been a hot topic of research in recent times, the majority of this has investigated non-sequential data. In this paper, we consider calibrating models that produce class probability estimates from sequences of data, focusing on the case where predictions are obtained from incomplete sequences. We show that traditional calibration techniques are not sufficiently expressive for this task, and propose methods that adapt calibration schemes depending on the length of an input sequence. Experimental evaluation shows that the proposed methods are often substantially more effective at calibrating probability estimates from modern sequential architectures for incomplete sequences across a range of application domains.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.