Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scalable Communication Endpoints for MPI+Threads Applications (2002.02509v1)

Published 6 Feb 2020 in cs.DC

Abstract: Hybrid MPI+threads programming is gaining prominence as an alternative to the traditional "MPI everywhere'" model to better handle the disproportionate increase in the number of cores compared with other on-node resources. Current implementations of these two models represent the two extreme cases of communication resource sharing in modern MPI implementations. In the MPI-everywhere model, each MPI process has a dedicated set of communication resources (also known as endpoints), which is ideal for performance but is resource wasteful. With MPI+threads, current MPI implementations share a single communication endpoint for all threads, which is ideal for resource usage but is hurtful for performance. In this paper, we explore the tradeoff space between performance and communication resource usage in MPI+threads environments. We first demonstrate the two extreme cases---one where all threads share a single communication endpoint and another where each thread gets its own dedicated communication endpoint (similar to the MPI-everywhere model) and showcase the inefficiencies in both these cases. Next, we perform a thorough analysis of the different levels of resource sharing in the context of Mellanox InfiniBand. Using the lessons learned from this analysis, we design an improved resource-sharing model to produce \emph{scalable communication endpoints} that can achieve the same performance as with dedicated communication resources per thread but using just a third of the resources.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube