Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The utility of tactile force to autonomous learning of in-hand manipulation is task-dependent (2002.02418v1)

Published 5 Feb 2020 in cs.RO and cs.LG

Abstract: Tactile sensors provide information that can be used to learn and execute manipulation tasks. Different tasks, however, might require different levels of sensory information; which in turn likely affect learning rates and performance. This paper evaluates the role of tactile information on autonomous learning of manipulation with a simulated 3-finger tendon-driven hand. We compare the ability of the same learning algorithm (Proximal Policy Optimization, PPO) to learn two manipulation tasks (rolling a ball about the horizontal axis with and without rotational stiffness) with three levels of tactile sensing: no sensing, 1D normal force, and 3D force vector. Surprisingly, and contrary to recent work on manipulation, adding 1D force-sensing did not always improve learning rates compared to no sensing---likely due to whether or not normal force is relevant to the task. Nonetheless, even though 3D force-sensing increases the dimensionality of the sensory input---which would in general hamper algorithm convergence---it resulted in faster learning rates and better performance. We conclude that, in general, sensory input is useful to learning only when it is relevant to the task---as is the case of 3D force-sensing for in-hand manipulation against gravity. Moreover, the utility of 3D force-sensing can even offset the added computational cost of learning with higher-dimensional sensory input.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.