Papers
Topics
Authors
Recent
2000 character limit reached

Nonconforming discretizations of convex minimization problems and precise relations to mixed methods (2002.02359v1)

Published 6 Feb 2020 in math.NA and cs.NA

Abstract: This article discusses nonconforming finite element methods for convex minimization problems and systematically derives dual mixed formulations. Duality relations lead to simple error estimates that avoid an explicit treatment of nonconformity errors. A reconstruction formula provides the discrete solution of the dual problem via a simple postprocessing procedure which implies a strong duality relation and is of interest in a posteriori error estimation. The framework applies to differentiable and nonsmooth problems, examples include $p$-Laplace, total-variation regularized, and obstacle problems. Numerical experiments illustrate advantages of nonconforming over standard conforming methods.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.