Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Minimizing Dynamic Regret and Adaptive Regret Simultaneously (2002.02085v1)

Published 6 Feb 2020 in cs.LG and stat.ML

Abstract: Regret minimization is treated as the golden rule in the traditional study of online learning. However, regret minimization algorithms tend to converge to the static optimum, thus being suboptimal for changing environments. To address this limitation, new performance measures, including dynamic regret and adaptive regret have been proposed to guide the design of online algorithms. The former one aims to minimize the global regret with respect to a sequence of changing comparators, and the latter one attempts to minimize every local regret with respect to a fixed comparator. Existing algorithms for dynamic regret and adaptive regret are developed independently, and only target one performance measure. In this paper, we bridge this gap by proposing novel online algorithms that are able to minimize the dynamic regret and adaptive regret simultaneously. In fact, our theoretical guarantee is even stronger in the sense that one algorithm is able to minimize the dynamic regret over any interval.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.