Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Minimizing Dynamic Regret and Adaptive Regret Simultaneously (2002.02085v1)

Published 6 Feb 2020 in cs.LG and stat.ML

Abstract: Regret minimization is treated as the golden rule in the traditional study of online learning. However, regret minimization algorithms tend to converge to the static optimum, thus being suboptimal for changing environments. To address this limitation, new performance measures, including dynamic regret and adaptive regret have been proposed to guide the design of online algorithms. The former one aims to minimize the global regret with respect to a sequence of changing comparators, and the latter one attempts to minimize every local regret with respect to a fixed comparator. Existing algorithms for dynamic regret and adaptive regret are developed independently, and only target one performance measure. In this paper, we bridge this gap by proposing novel online algorithms that are able to minimize the dynamic regret and adaptive regret simultaneously. In fact, our theoretical guarantee is even stronger in the sense that one algorithm is able to minimize the dynamic regret over any interval.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.