Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimax Value Interval for Off-Policy Evaluation and Policy Optimization (2002.02081v6)

Published 6 Feb 2020 in cs.LG, math.OC, and stat.ML

Abstract: We study minimax methods for off-policy evaluation (OPE) using value functions and marginalized importance weights. Despite that they hold promises of overcoming the exponential variance in traditional importance sampling, several key problems remain: (1) They require function approximation and are generally biased. For the sake of trustworthy OPE, is there anyway to quantify the biases? (2) They are split into two styles ("weight-learning" vs "value-learning"). Can we unify them? In this paper we answer both questions positively. By slightly altering the derivation of previous methods (one from each style; Uehara et al., 2020), we unify them into a single value interval that comes with a special type of double robustness: when either the value-function or the importance-weight class is well specified, the interval is valid and its length quantifies the misspecification of the other class. Our interval also provides a unified view of and new insights to some recent methods, and we further explore the implications of our results on exploration and exploitation in off-policy policy optimization with insufficient data coverage.

Citations (17)

Summary

We haven't generated a summary for this paper yet.