Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Source separation with weakly labelled data: An approach to computational auditory scene analysis (2002.02065v1)

Published 6 Feb 2020 in cs.SD and eess.AS

Abstract: Source separation is the task to separate an audio recording into individual sound sources. Source separation is fundamental for computational auditory scene analysis. Previous work on source separation has focused on separating particular sound classes such as speech and music. Many of previous work require mixture and clean source pairs for training. In this work, we propose a source separation framework trained with weakly labelled data. Weakly labelled data only contains the tags of an audio clip, without the occurrence time of sound events. We first train a sound event detection system with AudioSet. The trained sound event detection system is used to detect segments that are mostly like to contain a target sound event. Then a regression is learnt from a mixture of two randomly selected segments to a target segment conditioned on the audio tagging prediction of the target segment. Our proposed system can separate 527 kinds of sound classes from AudioSet within a single system. A U-Net is adopted for the separation system and achieves an average SDR of 5.67 dB over 527 sound classes in AudioSet.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.