Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combinatorial proofs of two theorems of Lutz and Stull (2002.01743v2)

Published 5 Feb 2020 in math.CA, cs.CC, and math.MG

Abstract: Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One of the theorems states that if $K \subset \mathbb{R}{n}$ is any set with equal Hausdorff and packing dimensions, then $$ \dim_{\mathrm{H}} \pi_{e}(K) = \min{\dim_{\mathrm{H}} K,1} $$ for almost every $e \in S{n - 1}$. Here $\pi_{e}$ stands for orthogonal projection to $\mathrm{span}(e)$. The primary purpose of this paper is to present proofs for Lutz and Stull's projection theorems which do not refer to information theoretic concepts. Instead, they will rely on combinatorial-geometric arguments, such as discretised versions of Kaufman's "potential theoretic" method, the pigeonhole principle, and a lemma of Katz and Tao. A secondary purpose is to slightly generalise Lutz and Stull's theorems: the versions in this paper apply to orthogonal projections to $m$-planes in $\mathbb{R}{n}$, for all $0 < m < n$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.