Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatially Variant Laplacian Pyramids for Multi-Frame Exposure Fusion (2002.01425v1)

Published 4 Feb 2020 in cs.MM

Abstract: Laplacian Pyramid Blending is a commonly used method for several seamless image blending tasks. While the method works well for images with comparable intensity levels, it is often unable to produce artifact free images for applications which handle images with large intensity variation such as exposure fusion. This paper proposes a spatially varying Laplacian Pyramid Blending to blend images with large intensity differences. The proposed method dynamically alters the blending levels during the final stage of Pyramid Reconstruction based on the amount of local intensity variation. The proposed algorithm out performs state-of-the-art methods for image blending both qualitatively as well as quantitatively on publicly available High Dynamic Range (HDR) imaging dataset. Qualitative improvements are demonstrated in terms of details, halos and dark halos. For quantitative comparison, the no-reference perceptual metric MEF-SSIM was used.

Citations (2)

Summary

We haven't generated a summary for this paper yet.