Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Spatially Variant Laplacian Pyramids for Multi-Frame Exposure Fusion (2002.01425v1)

Published 4 Feb 2020 in cs.MM

Abstract: Laplacian Pyramid Blending is a commonly used method for several seamless image blending tasks. While the method works well for images with comparable intensity levels, it is often unable to produce artifact free images for applications which handle images with large intensity variation such as exposure fusion. This paper proposes a spatially varying Laplacian Pyramid Blending to blend images with large intensity differences. The proposed method dynamically alters the blending levels during the final stage of Pyramid Reconstruction based on the amount of local intensity variation. The proposed algorithm out performs state-of-the-art methods for image blending both qualitatively as well as quantitatively on publicly available High Dynamic Range (HDR) imaging dataset. Qualitative improvements are demonstrated in terms of details, halos and dark halos. For quantitative comparison, the no-reference perceptual metric MEF-SSIM was used.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.