Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Integrated Photonic FFT for Optical Convolutions towards Efficient and High-Speed Neural Networks (2002.01308v2)

Published 1 Feb 2020 in physics.optics, cond-mat.dis-nn, and cs.ET

Abstract: The technologically-relevant task of feature extraction from data performed in deep-learning systems is routinely accomplished as repeated fast Fourier transforms (FFT) electronically in prevalent domain-specific architectures such as in graphics processing units (GPUs). However, electronics systems are limited with respect to power dissipation and delay, both, due to wire-charging challenges related to interconnect capacitance. Here we present a silicon photonics-based architecture for convolutional neural networks that harnesses the phase property of light to perform FFTs efficiently by executing the convolution as a multiplication in the Fourier-domain. The algorithmic executing time is determined by the time-of-flight of the signal through this photonic reconfigurable passive FFT filter circuit and is on the order of 10s of picosecond. A sensitivity analysis shows that this optical processor must be thermally phase stabilized corresponding to a few degrees. Furthermore, we find that for a small sample number, the obtainable number of convolutions per {time-power-chip area) outperforms GPUs by about 2 orders of magnitude. Lastly, we show that, conceptually, the optical FFT and convolution-processing performance is indeed directly linked to optoelectronic device-level, and improvements in plasmonics, metamaterials or nanophotonics are fueling next generation densely interconnected intelligent photonic circuits with relevance for edge-computing 5G networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.