Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Minimax Defense against Gradient-based Adversarial Attacks (2002.01256v1)

Published 4 Feb 2020 in cs.LG, cs.GT, and stat.ML

Abstract: State-of-the-art adversarial attacks are aimed at neural network classifiers. By default, neural networks use gradient descent to minimize their loss function. The gradient of a classifier's loss function is used by gradient-based adversarial attacks to generate adversarially perturbed images. We pose the question whether another type of optimization could give neural network classifiers an edge. Here, we introduce a novel approach that uses minimax optimization to foil gradient-based adversarial attacks. Our minimax classifier is the discriminator of a generative adversarial network (GAN) that plays a minimax game with the GAN generator. In addition, our GAN generator projects all points onto a manifold that is different from the original manifold since the original manifold might be the cause of adversarial attacks. To measure the performance of our minimax defense, we use adversarial attacks - Carlini Wagner (CW), DeepFool, Fast Gradient Sign Method (FGSM) - on three datasets: MNIST, CIFAR-10 and German Traffic Sign (TRAFFIC). Against CW attacks, our minimax defense achieves 98.07% (MNIST-default 98.93%), 73.90% (CIFAR-10-default 83.14%) and 94.54% (TRAFFIC-default 96.97%). Against DeepFool attacks, our minimax defense achieves 98.87% (MNIST), 76.61% (CIFAR-10) and 94.57% (TRAFFIC). Against FGSM attacks, we achieve 97.01% (MNIST), 76.79% (CIFAR-10) and 81.41% (TRAFFIC). Our Minimax adversarial approach presents a significant shift in defense strategy for neural network classifiers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.