Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Syntactically Look-Ahead Attention Network for Sentence Compression (2002.01145v2)

Published 4 Feb 2020 in cs.CL

Abstract: Sentence compression is the task of compressing a long sentence into a short one by deleting redundant words. In sequence-to-sequence (Seq2Seq) based models, the decoder unidirectionally decides to retain or delete words. Thus, it cannot usually explicitly capture the relationships between decoded words and unseen words that will be decoded in the future time steps. Therefore, to avoid generating ungrammatical sentences, the decoder sometimes drops important words in compressing sentences. To solve this problem, we propose a novel Seq2Seq model, syntactically look-ahead attention network (SLAHAN), that can generate informative summaries by explicitly tracking both dependency parent and child words during decoding and capturing important words that will be decoded in the future. The results of the automatic evaluation on the Google sentence compression dataset showed that SLAHAN achieved the best kept-token-based-F1, ROUGE-1, ROUGE-2 and ROUGE-L scores of 85.5, 79.3, 71.3 and 79.1, respectively. SLAHAN also improved the summarization performance on longer sentences. Furthermore, in the human evaluation, SLAHAN improved informativeness without losing readability.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.