Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Classification of Upper Limb Movements \newline Using Convolutional Neural Network \newline with 3D Inception Block (2002.01121v1)

Published 4 Feb 2020 in cs.HC and eess.SP

Abstract: A brain-machine interface (BMI) based on electroencephalography (EEG) can overcome the movement deficits for patients and real-world applications for healthy people. Ideally, the BMI system detects user movement intentions transforms them into a control signal for a robotic arm movement. In this study, we made progress toward user intention decoding and successfully classified six different reaching movements of the right arm in the movement execution (ME). Notably, we designed an experimental environment using robotic arm movement and proposed a convolutional neural network architecture (CNN) with inception block for robust classify executed movements of the same limb. As a result, we confirmed the classification accuracies of six different directions show 0.45 for the executed session. The results proved that the proposed architecture has approximately 6~13% performance increase compared to its conventional classification models. Hence, we demonstrate the 3D inception CNN architecture to contribute to the continuous decoding of ME.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.