Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Within-sample variability-invariant loss for robust speaker recognition under noisy environments (2002.00924v2)

Published 3 Feb 2020 in eess.AS and cs.SD

Abstract: Despite the significant improvements in speaker recognition enabled by deep neural networks, unsatisfactory performance persists under noisy environments. In this paper, we train the speaker embedding network to learn the "clean" embedding of the noisy utterance. Specifically, the network is trained with the original speaker identification loss with an auxiliary within-sample variability-invariant loss. This auxiliary variability-invariant loss is used to learn the same embedding among the clean utterance and its noisy copies and prevents the network from encoding the undesired noises or variabilities into the speaker representation. Furthermore, we investigate the data preparation strategy for generating clean and noisy utterance pairs on-the-fly. The strategy generates different noisy copies for the same clean utterance at each training step, helping the speaker embedding network generalize better under noisy environments. Experiments on VoxCeleb1 indicate that the proposed training framework improves the performance of the speaker verification system in both clean and noisy conditions.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.