Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Randomized Spectral Clustering in Large-Scale Stochastic Block Models (2002.00839v3)

Published 20 Jan 2020 in cs.SI, cs.LG, stat.ME, and stat.ML

Abstract: Spectral clustering has been one of the widely used methods for community detection in networks. However, large-scale networks bring computational challenges to the eigenvalue decomposition therein. In this paper, we study the spectral clustering using randomized sketching algorithms from a statistical perspective, where we typically assume the network data are generated from a stochastic block model that is not necessarily of full rank. To do this, we first use the recently developed sketching algorithms to obtain two randomized spectral clustering algorithms, namely, the random projection-based and the random sampling-based spectral clustering. Then we study the theoretical bounds of the resulting algorithms in terms of the approximation error for the population adjacency matrix, the misclassification error, and the estimation error for the link probability matrix. It turns out that, under mild conditions, the randomized spectral clustering algorithms lead to the same theoretical bounds as those of the original spectral clustering algorithm. We also extend the results to degree-corrected stochastic block models. Numerical experiments support our theoretical findings and show the efficiency of randomized methods. A new R package called Rclust is developed and made available to the public.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.