Papers
Topics
Authors
Recent
2000 character limit reached

FastWordBug: A Fast Method To Generate Adversarial Text Against NLP Applications (2002.00760v1)

Published 31 Jan 2020 in cs.CL and cs.CR

Abstract: In this paper, we present a novel algorithm, FastWordBug, to efficiently generate small text perturbations in a black-box setting that forces a sentiment analysis or text classification mode to make an incorrect prediction. By combining the part of speech attributes of words, we propose a scoring method that can quickly identify important words that affect text classification. We evaluate FastWordBug on three real-world text datasets and two state-of-the-art machine learning models under black-box setting. The results show that our method can significantly reduce the accuracy of the model, and at the same time, we can call the model as little as possible, with the highest attack efficiency. We also attack two popular real-world cloud services of NLP, and the results show that our method works as well.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.