Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Regularizers for Single-step Adversarial Training (2002.00614v1)

Published 3 Feb 2020 in cs.LG and cs.CV

Abstract: The progress in the last decade has enabled machine learning models to achieve impressive performance across a wide range of tasks in Computer Vision. However, a plethora of works have demonstrated the susceptibility of these models to adversarial samples. Adversarial training procedure has been proposed to defend against such adversarial attacks. Adversarial training methods augment mini-batches with adversarial samples, and typically single-step (non-iterative) methods are used for generating these adversarial samples. However, models trained using single-step adversarial training converge to degenerative minima where the model merely appears to be robust. The pseudo robustness of these models is due to the gradient masking effect. Although multi-step adversarial training helps to learn robust models, they are hard to scale due to the use of iterative methods for generating adversarial samples. To address these issues, we propose three different types of regularizers that help to learn robust models using single-step adversarial training methods. The proposed regularizers mitigate the effect of gradient masking by harnessing on properties that differentiate a robust model from that of a pseudo robust model. Performance of models trained using the proposed regularizers is on par with models trained using computationally expensive multi-step adversarial training methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.