Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Choice Set Optimization Under Discrete Choice Models of Group Decisions (2002.00421v2)

Published 2 Feb 2020 in cs.GT, cs.LG, and stat.ML

Abstract: The way that people make choices or exhibit preferences can be strongly affected by the set of available alternatives, often called the choice set. Furthermore, there are usually heterogeneous preferences, either at an individual level within small groups or within sub-populations of large groups. Given the availability of choice data, there are now many models that capture this behavior in order to make effective predictions--however, there is little work in understanding how directly changing the choice set can be used to influence the preferences of a collection of decision-makers. Here, we use discrete choice modeling to develop an optimization framework of such interventions for several problems of group influence, namely maximizing agreement or disagreement and promoting a particular choice. We show that these problems are NP-hard in general, but imposing restrictions reveals a fundamental boundary: promoting a choice can be easier than encouraging consensus or sowing discord. We design approximation algorithms for the hard problems and show that they work well on real-world choice data.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.