Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Evaluating Gaussian Blurring in Perceptual Hashing as a Facial Image Filter (2002.00140v2)

Published 1 Feb 2020 in cs.CV

Abstract: With the growth in social media, there is a huge amount of images of faces available on the internet. Often, people use other people's pictures on their own profile. Perceptual hashing is often used to detect whether two images are identical. Therefore, it can be used to detect whether people are misusing others' pictures. In perceptual hashing, a hash is calculated for a given image, and a new test image is mapped to one of the existing hashes if duplicate features are present. Therefore, it can be used as an image filter to flag banned image content or adversarial attacks --which are modifications that are made on purpose to deceive the filter-- even though the content might be changed to deceive the filters. For this reason, it is critical for perceptual hashing to be robust enough to take transformations such as resizing, cropping, and slight pixel modifications into account. In this paper, we would like to propose to experiment with effect of gaussian blurring in perceptual hashing for detecting misuse of personal images specifically for face images. We hypothesize that use of gaussian blurring on the image before calculating its hash will increase the accuracy of our filter that detects adversarial attacks which consist of image cropping, adding text annotation, and image rotation.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube