Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Rigorous Guarantees for Tyler's M-estimator via quantum expansion (2002.00071v5)

Published 31 Jan 2020 in cs.DS, math.ST, and stat.TH

Abstract: Estimating the shape of an elliptical distribution is a fundamental problem in statistics. One estimator for the shape matrix, Tyler's M-estimator, has been shown to have many appealing asymptotic properties. It performs well in numerical experiments and can be quickly computed in practice by a simple iterative procedure. Despite the many years the estimator has been studied in the statistics community, there was neither a tight non-asymptotic bound on the rate of the estimator nor a proof that the iterative procedure converges in polynomially many steps. Here we observe a surprising connection between Tyler's M-estimator and operator scaling, which has been intensively studied in recent years in part because of its connections to the Brascamp-Lieb inequality in analysis. We use this connection, together with novel results on quantum expanders, to show that Tyler's M-estimator has the optimal rate up to factors logarithmic in the dimension, and that in the generative model the iterative procedure has a linear convergence rate even without regularization.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.