Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rigorous Guarantees for Tyler's M-estimator via quantum expansion

Published 31 Jan 2020 in cs.DS, math.ST, and stat.TH | (2002.00071v5)

Abstract: Estimating the shape of an elliptical distribution is a fundamental problem in statistics. One estimator for the shape matrix, Tyler's M-estimator, has been shown to have many appealing asymptotic properties. It performs well in numerical experiments and can be quickly computed in practice by a simple iterative procedure. Despite the many years the estimator has been studied in the statistics community, there was neither a tight non-asymptotic bound on the rate of the estimator nor a proof that the iterative procedure converges in polynomially many steps. Here we observe a surprising connection between Tyler's M-estimator and operator scaling, which has been intensively studied in recent years in part because of its connections to the Brascamp-Lieb inequality in analysis. We use this connection, together with novel results on quantum expanders, to show that Tyler's M-estimator has the optimal rate up to factors logarithmic in the dimension, and that in the generative model the iterative procedure has a linear convergence rate even without regularization.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.