Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Ultimate greedy approximation of independent sets in subcubic graphs (2001.11997v1)

Published 31 Jan 2020 in cs.DS

Abstract: We study the approximability of the maximum size independent set (MIS) problem in bounded degree graphs. This is one of the most classic and widely studied NP-hard optimization problems. We focus on the well known minimum degree greedy algorithm for this problem. This algorithm iteratively chooses a minimum degree vertex in the graph, adds it to the solution and removes its neighbors, until the remaining graph is empty. The approximation ratios of this algorithm have been very widely studied, where it is augmented with an advice that tells the greedy which minimum degree vertex to choose if it is not unique. Our main contribution is a new mathematical theory for the design of such greedy algorithms with efficiently computable advice and for the analysis of their approximation ratios. With this new theory we obtain the ultimate approximation ratio of 5/4 for greedy on graphs with maximum degree 3, which completely solves the open problem from the paper by Halldorsson and Yoshihara (1995). Our algorithm is the fastest currently known algorithm with this approximation ratio on such graphs. We apply our new algorithm to the minimum vertex cover problem on graphs with maximum degree 3 to obtain a substantially faster 6/5-approximation algorithm than the one currently known. We complement our positive, upper bound results with negative, lower bound results which prove that the problem of designing good advice for greedy is computationally hard and even hard to approximate on various classes of graphs. These results significantly improve on such previously known hardness results. Moreover, these results suggest that obtaining the upper bound results on the design and analysis of greedy advice is non-trivial.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.