Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Encoding-based Memory Modules for Recurrent Neural Networks (2001.11771v1)

Published 31 Jan 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Learning to solve sequential tasks with recurrent models requires the ability to memorize long sequences and to extract task-relevant features from them. In this paper, we study the memorization subtask from the point of view of the design and training of recurrent neural networks. We propose a new model, the Linear Memory Network, which features an encoding-based memorization component built with a linear autoencoder for sequences. We extend the memorization component with a modular memory that encodes the hidden state sequence at different sampling frequencies. Additionally, we provide a specialized training algorithm that initializes the memory to efficiently encode the hidden activations of the network. The experimental results on synthetic and real-world datasets show that specializing the training algorithm to train the memorization component always improves the final performance whenever the memorization of long sequences is necessary to solve the problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.