Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improving LPCNet-based Text-to-Speech with Linear Prediction-structured Mixture Density Network (2001.11686v1)

Published 31 Jan 2020 in eess.AS

Abstract: In this paper, we propose an improved LPCNet vocoder using a linear prediction (LP)-structured mixture density network (MDN). The recently proposed LPCNet vocoder has successfully achieved high-quality and lightweight speech synthesis systems by combining a vocal tract LP filter with a WaveRNN-based vocal source (i.e., excitation) generator. However, the quality of synthesized speech is often unstable because the vocal source component is insufficiently represented by the mu-law quantization method, and the model is trained without considering the entire speech production mechanism. To address this problem, we first introduce LP-MDN, which enables the autoregressive neural vocoder to structurally represent the interactions between the vocal tract and vocal source components. Then, we propose to incorporate the LP-MDN to the LPCNet vocoder by replacing the conventional discretized output with continuous density distribution. The experimental results verify that the proposed system provides high quality synthetic speech by achieving a mean opinion score of 4.41 within a text-to-speech framework.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.