Papers
Topics
Authors
Recent
2000 character limit reached

Analytic Study of Double Descent in Binary Classification: The Impact of Loss (2001.11572v1)

Published 30 Jan 2020 in stat.ML, cs.IT, cs.LG, eess.SP, and math.IT

Abstract: Extensive empirical evidence reveals that, for a wide range of different learning methods and datasets, the risk curve exhibits a double-descent (DD) trend as a function of the model size. In a paper [Zeyu,Kammoun,Thrampoulidis,2019] the authors studied binary linear classification models and showed that the test error of gradient descent (GD) with logistic loss undergoes a DD. In this paper, we complement these results by extending them to GD with square loss. We show that the DD phenomenon persists, but we also identify several differences compared to logistic loss. This emphasizes that crucial features of DD curves (such as their transition threshold and global minima) depend both on the training data and on the learning algorithm. We further study the dependence of DD curves on the size of the training set. Similar to our earlier work, our results are analytic: we plot the DD curves by first deriving sharp asymptotics for the test error under Gaussian features. Albeit simple, the models permit a principled study of DD features, the outcomes of which theoretically corroborate related empirical findings occurring in more complex learning tasks.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.