Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hierarchical decoding to reduce hardware requirements for quantum computing (2001.11427v1)

Published 30 Jan 2020 in quant-ph, cs.IT, and math.IT

Abstract: Extensive quantum error correction is necessary in order to scale quantum hardware to the regime of practical applications. As a result, a significant amount of decoding hardware is necessary to process the colossal amount of data required to constantly detect and correct errors occurring over the millions of physical qubits driving the computation. The implementation of a recent highly optimized version of Shor's algorithm to factor a 2,048-bits integer would require more 7 TBit/s of bandwidth for the sole purpose of quantum error correction and up to 20,000 decoding units. To reduce the decoding hardware requirements, we propose a fault-tolerant quantum computing architecture based on surface codes with a cheap hard-decision decoder, the lazy decoder, combined with a sophisticated decoding unit that takes care of complex error configurations. Our design drops the decoding hardware requirements by several orders of magnitude assuming that good enough qubits are provided. Given qubits and quantum gates with a physical error rate $p=10{-4}$, the lazy decoder drops both the bandwidth requirements and the number of decoding units by a factor 50x. Provided very good qubits with error rate $p=10{-5}$, we obtain a 1,500x reduction in bandwidth and decoding hardware thanks to the lazy decoder. Finally, the lazy decoder can be used as a decoder accelerator. Our simulations show a 10x speed-up of the Union-Find decoder and a 50x speed-up of the Minimum Weight Perfect Matching decoder.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)