Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

NCVis: Noise Contrastive Approach for Scalable Visualization (2001.11411v1)

Published 30 Jan 2020 in stat.ML and cs.LG

Abstract: Modern methods for data visualization via dimensionality reduction, such as t-SNE, usually have performance issues that prohibit their application to large amounts of high-dimensional data. In this work, we propose NCVis -- a high-performance dimensionality reduction method built on a sound statistical basis of noise contrastive estimation. We show that NCVis outperforms state-of-the-art techniques in terms of speed while preserving the representation quality of other methods. In particular, the proposed approach successfully proceeds a large dataset of more than 1 million news headlines in several minutes and presents the underlying structure in a human-readable way. Moreover, it provides results consistent with classical methods like t-SNE on more straightforward datasets like images of hand-written digits. We believe that the broader usage of such software can significantly simplify the large-scale data analysis and lower the entry barrier to this area.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube