Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Iterative Batch Back-Translation for Neural Machine Translation: A Conceptual Model (2001.11327v2)

Published 26 Nov 2019 in cs.CL

Abstract: An effective method to generate a large number of parallel sentences for training improved neural machine translation (NMT) systems is the use of back-translations of the target-side monolingual data. Recently, iterative back-translation has been shown to outperform standard back-translation albeit on some language pairs. This work proposes the iterative batch back-translation that is aimed at enhancing the standard iterative back-translation and enabling the efficient utilization of more monolingual data. After each iteration, improved back-translations of new sentences are added to the parallel data that will be used to train the final forward model. The work presents a conceptual model of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube