Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Real-time Linear Operator Construction and State Estimation with the Kalman Filter (2001.11256v3)

Published 30 Jan 2020 in stat.CO and stat.ML

Abstract: The Kalman filter is the most powerful tool for estimation of the states of a linear Gaussian system. In addition, using this method, an expectation maximization algorithm can be used to estimate the parameters of the model. However, this algorithm cannot function in real time. Thus, we propose a new method that can be used to estimate the transition matrices and the states of the system in real time. The proposed method uses three ideas: estimation in an observation space, a time-invariant interval, and an online learning framework. Applied to damped oscillation model, we have obtained extraordinary performance to estimate the matrices. In addition, by introducing localization and spatial uniformity to the proposed method, we have demonstrated that noise can be reduced in high-dimensional spatio-temporal data. Moreover, the proposed method has potential for use in areas such as weather forecasting and vector field analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.