Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Finite-Time Analysis of Round-Robin Kullback-Leibler Upper Confidence Bounds for Optimal Adaptive Allocation with Multiple Plays and Markovian Rewards (2001.11201v2)

Published 30 Jan 2020 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We study an extension of the classic stochastic multi-armed bandit problem which involves multiple plays and Markovian rewards in the rested bandits setting. In order to tackle this problem we consider an adaptive allocation rule which at each stage combines the information from the sample means of all the arms, with the Kullback-Leibler upper confidence bound of a single arm which is selected in round-robin way. For rewards generated from a one-parameter exponential family of Markov chains, we provide a finite-time upper bound for the regret incurred from this adaptive allocation rule, which reveals the logarithmic dependence of the regret on the time horizon, and which is asymptotically optimal. For our analysis we devise several concentration results for Markov chains, including a maximal inequality for Markov chains, that may be of interest in their own right. As a byproduct of our analysis we also establish asymptotically optimal, finite-time guarantees for the case of multiple plays, and i.i.d. rewards drawn from a one-parameter exponential family of probability densities. Additionally, we provide simulation results that illustrate that calculating Kullback-Leibler upper confidence bounds in a round-robin way, is significantly more efficient than calculating them for every arm at each round, and that the expected regrets of those two approaches behave similarly.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)