Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An automatic deep learning-based workflow for glioblastoma survival prediction using pre-operative multimodal MR images (2001.11155v1)

Published 30 Jan 2020 in physics.med-ph and eess.IV

Abstract: We proposed a fully automatic workflow for glioblastoma (GBM) survival prediction using deep learning (DL) methods. 285 glioma (210 GBM, 75 low-grade glioma) patients were included. 163 of the GBM patients had overall survival (OS) data. Every patient had four pre-operative MR scans and manually drawn tumor contours. For automatic tumor segmentation, a 3D convolutional neural network (CNN) was trained and validated using 122 glioma patients. The trained model was applied to the remaining 163 GBM patients to generate tumor contours. The handcrafted and DL-based radiomic features were extracted from auto-contours using explicitly designed algorithms and a pre-trained CNN respectively. 163 GBM patients were randomly split into training (n=122) and testing (n=41) sets for survival analysis. Cox regression models with regularization techniques were trained to construct the handcrafted and DL-based signatures. The prognostic power of the two signatures was evaluated and compared. The 3D CNN achieved an average Dice coefficient of 0.85 across 163 GBM patients for tumor segmentation. The handcrafted signature achieved a C-index of 0.64 (95% CI: 0.55-0.73), while the DL-based signature achieved a C-index of 0.67 (95% CI: 0.57-0.77). Unlike the handcrafted signature, the DL-based signature successfully stratified testing patients into two prognostically distinct groups (p-value<0.01, HR=2.80, 95% CI: 1.26-6.24). The proposed 3D CNN generated accurate GBM tumor contours from four MR images. The DL-based signature resulted in better GBM survival prediction, in terms of higher C-index and significant patient stratification, than the handcrafted signature. The proposed automatic radiomic workflow demonstrated the potential of improving patient stratification and survival prediction in GBM patients.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.