Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

An automatic deep learning-based workflow for glioblastoma survival prediction using pre-operative multimodal MR images (2001.11155v1)

Published 30 Jan 2020 in physics.med-ph and eess.IV

Abstract: We proposed a fully automatic workflow for glioblastoma (GBM) survival prediction using deep learning (DL) methods. 285 glioma (210 GBM, 75 low-grade glioma) patients were included. 163 of the GBM patients had overall survival (OS) data. Every patient had four pre-operative MR scans and manually drawn tumor contours. For automatic tumor segmentation, a 3D convolutional neural network (CNN) was trained and validated using 122 glioma patients. The trained model was applied to the remaining 163 GBM patients to generate tumor contours. The handcrafted and DL-based radiomic features were extracted from auto-contours using explicitly designed algorithms and a pre-trained CNN respectively. 163 GBM patients were randomly split into training (n=122) and testing (n=41) sets for survival analysis. Cox regression models with regularization techniques were trained to construct the handcrafted and DL-based signatures. The prognostic power of the two signatures was evaluated and compared. The 3D CNN achieved an average Dice coefficient of 0.85 across 163 GBM patients for tumor segmentation. The handcrafted signature achieved a C-index of 0.64 (95% CI: 0.55-0.73), while the DL-based signature achieved a C-index of 0.67 (95% CI: 0.57-0.77). Unlike the handcrafted signature, the DL-based signature successfully stratified testing patients into two prognostically distinct groups (p-value<0.01, HR=2.80, 95% CI: 1.26-6.24). The proposed 3D CNN generated accurate GBM tumor contours from four MR images. The DL-based signature resulted in better GBM survival prediction, in terms of higher C-index and significant patient stratification, than the handcrafted signature. The proposed automatic radiomic workflow demonstrated the potential of improving patient stratification and survival prediction in GBM patients.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube