Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Class of Linear Programs Solvable by Coordinate-Wise Minimization (2001.10467v5)

Published 28 Jan 2020 in math.OC and cs.CV

Abstract: Coordinate-wise minimization is a simple popular method for large-scale optimization. Unfortunately, for general (non-differentiable) convex problems it may not find global minima. We present a class of linear programs that coordinate-wise minimization solves exactly. We show that dual LP relaxations of several well-known combinatorial optimization problems are in this class and the method finds a global minimum with sufficient accuracy in reasonable runtimes. Moreover, for extensions of these problems that no longer are in this class the method yields reasonably good suboptima. Though the presented LP relaxations can be solved by more efficient methods (such as max-flow), our results are theoretically non-trivial and can lead to new large-scale optimization algorithms in the future.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube