Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Estimating Descriptors for Large Graphs (2001.10301v2)

Published 28 Jan 2020 in cs.DB

Abstract: Embedding networks into a fixed dimensional feature space, while preserving its essential structural properties is a fundamental task in graph analytics. These feature vectors (graph descriptors) are used to measure the pairwise similarity between graphs. This enables applying data mining algorithms (e.g classification, clustering, or anomaly detection) on graph-structured data which have numerous applications in multiple domains. State-of-the-art algorithms for computing descriptors require the entire graph to be in memory, entailing a huge memory footprint, and thus do not scale well to increasing sizes of real-world networks. In this work, we propose streaming algorithms to efficiently approximate descriptors by estimating counts of sub-graphs of order $k\leq 4$, and thereby devise extensions of two existing graph comparison paradigms: the Graphlet Kernel and NetSimile. Our algorithms require a single scan over the edge stream, have space complexity that is a fraction of the input size, and approximate embeddings via a simple sampling scheme. Our design exploits the trade-off between available memory and estimation accuracy to provide a method that works well for limited memory requirements. We perform extensive experiments on real-world networks and demonstrate that our algorithms scale well to massive graphs.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.