Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Optimization for Energy-efficient Fog Computing in the Tactile Internet (2001.10199v1)

Published 28 Jan 2020 in cs.NI, cs.DC, and cs.MA

Abstract: Tactile Internet is an emerging concept that focuses on supporting high-fidelity, ultra-responsive, and widely available human-to-machine interactions. To reduce the transmission latency and alleviate Internet congestion, fog computing has been advocated as an important component of the Tactile Internet. In this paper, we focus on energy-efficient design of fog computing networks that support low-latency Tactile Internet applications. We investigate two performance metrics: Service response time of end-users and power usage efficiency of fog nodes. We quantify the fundamental tradeoff between these two metrics and then extend our analysis to fog computing networks involving cooperation between fog nodes. We introduce a novel cooperative fog computing concept, referred to as offload forwarding, in which a set of fog nodes with different computing and energy resources can cooperate with each other. The objective of this cooperation is to balance the workload processed by different fog nodes, further reduce the service response time, and improve the efficiency of power usage. We develop a distributed optimization framework based on dual decomposition to achieve the optimal tradeoff. Our framework does not require fog nodes to disclose their private information nor conduct back-and-forth negotiations with each other. Two distributed optimization algorithms are proposed. One is based on the subgradient method with dual decomposition and the other is based on distributed ADMM-VS. We prove that both algorithms can achieve the optimal workload allocation that minimizes the response time under the given power efficiency constraints of fog nodes.

Citations (105)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)