Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for Backscatter-Aided Data Offloading in Mobile Edge Computing (2001.10183v1)

Published 28 Jan 2020 in cs.IT, eess.SP, and math.IT

Abstract: Wireless network optimization has been becoming very challenging as the problem size and complexity increase tremendously, due to close couplings among network entities with heterogeneous service and resource requirements. By continuously interacting with the environment, deep reinforcement learning (DRL) provides a mechanism for different network entities to build knowledge and make autonomous decisions to improve network performance. In this article, we first review typical DRL approaches and recent enhancements. We then discuss the applications of DRL for mobile edge computing (MEC), which can be used for the low-power IoT devices, e.g., wireless sensors in healthcare monitoring, to offload computation workload to nearby MEC servers. To balance power consumption in offloading and computation, we propose a novel hybrid offloading model that exploits the complement operations of RF communications and low-power backscatter communications. The DRL framework is then customized to optimize the transmission scheduling and workload allocation in two communications technologies, which is shown to enhance the offloading performance significantly compared with existing schemes.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.