Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximations for Throughput Maximization (2001.10037v2)

Published 27 Jan 2020 in cs.DS

Abstract: In this paper we study the classical problem of throughput maximization. In this problem we have a collection $J$ of $n$ jobs, each having a release time $r_j$, deadline $d_j$, and processing time $p_j$. They have to be scheduled non-preemptively on $m$ identical parallel machines. The goal is to find a schedule which maximizes the number of jobs scheduled entirely in their $[r_j,d_j]$ window. This problem has been studied extensively (even for the case of $m=1$). Several special cases of the problem remain open. Bar-Noy et al. [STOC1999] presented an algorithm with ratio $1-1/(1+1/m)m$ for $m$ machines, which approaches $1-1/e$ as $m$ increases. For $m=1$, Chuzhoy-Ostrovsky-Rabani [FOCS2001] presented an algorithm with approximation with ratio $1-\frac{1}{e}-\varepsilon$ (for any $\varepsilon>0$). Recently Im-Li-Moseley [IPCO2017] presented an algorithm with ratio $1-1/e-\varepsilon_0$ for some absolute constant $\varepsilon_0>0$ for any fixed $m$. They also presented an algorithm with ratio $1-O(\sqrt{\log m/m})-\varepsilon$ for general $m$ which approaches 1 as $m$ grows. The approximability of the problem for $m=O(1)$ remains a major open question. Even for the case of $m=1$ and $c=O(1)$ distinct processing times the problem is open (Sgall [ESA2012]). In this paper we study the case of $m=O(1)$ and show that if there are $c$ distinct processing times, i.e. $p_j$'s come from a set of size $c$, then there is a $(1-\varepsilon)$-approximation that runs in time $O(n{mc7\varepsilon{-6}}\log T)$, where $T$ is the largest deadline. Therefore, for constant $m$ and constant $c$ this yields a PTAS. Our algorithm is based on proving structural properties for a near optimum solution that allows one to use a dynamic programming with pruning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (3)

Summary

We haven't generated a summary for this paper yet.