Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Approximations for Throughput Maximization (2001.10037v2)

Published 27 Jan 2020 in cs.DS

Abstract: In this paper we study the classical problem of throughput maximization. In this problem we have a collection $J$ of $n$ jobs, each having a release time $r_j$, deadline $d_j$, and processing time $p_j$. They have to be scheduled non-preemptively on $m$ identical parallel machines. The goal is to find a schedule which maximizes the number of jobs scheduled entirely in their $[r_j,d_j]$ window. This problem has been studied extensively (even for the case of $m=1$). Several special cases of the problem remain open. Bar-Noy et al. [STOC1999] presented an algorithm with ratio $1-1/(1+1/m)m$ for $m$ machines, which approaches $1-1/e$ as $m$ increases. For $m=1$, Chuzhoy-Ostrovsky-Rabani [FOCS2001] presented an algorithm with approximation with ratio $1-\frac{1}{e}-\varepsilon$ (for any $\varepsilon>0$). Recently Im-Li-Moseley [IPCO2017] presented an algorithm with ratio $1-1/e-\varepsilon_0$ for some absolute constant $\varepsilon_0>0$ for any fixed $m$. They also presented an algorithm with ratio $1-O(\sqrt{\log m/m})-\varepsilon$ for general $m$ which approaches 1 as $m$ grows. The approximability of the problem for $m=O(1)$ remains a major open question. Even for the case of $m=1$ and $c=O(1)$ distinct processing times the problem is open (Sgall [ESA2012]). In this paper we study the case of $m=O(1)$ and show that if there are $c$ distinct processing times, i.e. $p_j$'s come from a set of size $c$, then there is a $(1-\varepsilon)$-approximation that runs in time $O(n{mc7\varepsilon{-6}}\log T)$, where $T$ is the largest deadline. Therefore, for constant $m$ and constant $c$ this yields a PTAS. Our algorithm is based on proving structural properties for a near optimum solution that allows one to use a dynamic programming with pruning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.