Papers
Topics
Authors
Recent
2000 character limit reached

Compressed Sensing with 1D Total Variation: Breaking Sample Complexity Barriers via Non-Uniform Recovery (2001.09952v2)

Published 27 Jan 2020 in cs.IT and math.IT

Abstract: This paper investigates total variation minimization in one spatial dimension for the recovery of gradient-sparse signals from undersampled Gaussian measurements. Recently established bounds for the required sampling rate state that uniform recovery of all $s$-gradient-sparse signals in $\mathbb{R}n$ is only possible with $m \gtrsim \sqrt{s n} \cdot \text{PolyLog}(n)$ measurements. Such a condition is especially prohibitive for high-dimensional problems, where $s$ is much smaller than $n$. However, previous empirical findings seem to indicate that this sampling rate does not reflect the typical behavior of total variation minimization. The present work provides a rigorous analysis that breaks the $\sqrt{s n}$-bottleneck for a large class of "natural" signals. The main result shows that non-uniform recovery succeeds with high probability for $m \gtrsim s \cdot \text{PolyLog}(n)$ measurements if the jump discontinuities of the signal vector are sufficiently well separated. In particular, this guarantee allows for signals arising from a discretization of piecewise constant functions defined on an interval. The key ingredient of the proof is a novel upper bound for the associated conic Gaussian mean width, which is based on a signal-dependent, non-dyadic Haar wavelet transform. Furthermore, a natural extension to stable and robust recovery is addressed.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.