Papers
Topics
Authors
Recent
2000 character limit reached

Applying Gene Expression Programming for Solving One-Dimensional Bin-Packing Problems (2001.09923v1)

Published 13 Jan 2020 in cs.NE and cs.AI

Abstract: This work aims to study and explore the use of Gene Expression Programming (GEP) in solving the on-line Bin-Packing problem. The main idea is to show how GEP can automatically find acceptable heuristic rules to solve the problem efficiently and economically. One dimensional Bin-Packing problem is considered in the course of this work with the constraint of minimizing the number of bins filled with the given pieces. Experimental Data includes instances of benchmark test data taken from Falkenauer (1996) for One-dimensional Bin-Packing Problems. Results show that GEP can be used as a very powerful and flexible tool for finding interesting compact rules suited for the problem. The impact of functions is also investigated to show how they can affect and influence the success of rates when they appear in rules. High success rates are gained with smaller population size and fewer generations compared to previous work performed using Genetic Programming.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.